Most datasets contain "missing values", meaning that the data is incomplete. Deciding how to handle missing values can be challenging! In this video, I'll cover all of the basics: how missing values are represented in pandas, how to locate them, and options for how to drop them or fill them in.
SUBSCRIBE to learn data science with Python:
https://www.youtube.com/dataschool?sub_confirmation=1
JOIN the "Data School Insiders" community and receive exclusive rewards:
https://www.patreon.com/dataschool
== RESOURCES ==
GitHub repository for the series: https://github.com/justmarkham/pandas-videos
"read_csv" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
"isnull" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.isnull.html
"notnull" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.notnull.html
"dropna" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html
"value_counts" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html
"fillna" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html
Working with missing data: http://pandas.pydata.org/pandas-docs/stable/missing_data.html
== LET'S CONNECT! ==
Newsletter: https://www.dataschool.io/subscribe/
Twitter: https://twitter.com/justmarkham
Facebook: https://www.facebook.com/DataScienceSchool/
LinkedIn: https://www.linkedin.com/in/justmarkham/