In part two of our discussion of the index, we'll switch our focus from the DataFrame index to the Series index. After discussing index-based selection and sorting, I'll demonstrate how automatic index alignment during mathematical operations and concatenation enables us to easily work with incomplete data in pandas.

SUBSCRIBE to learn data science with Python:
https://www.youtube.com/dataschool?sub_confirmation=1

JOIN the "Data School Insiders" community and receive exclusive rewards:
https://www.patreon.com/dataschool

== RESOURCES ==
GitHub repository for the series: https://github.com/justmarkham/pandas-videos
"set_index" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.set_index.html
"value_counts" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.value_counts.html
"sort_values" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.sort_values.html
"sort_index" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.sort_index.html
"Series" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
"concat" documentation: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.concat.html
Indexing and selecting data: http://pandas.pydata.org/pandas-docs/stable/indexing.html

== LET'S CONNECT! ==
Newsletter: https://www.dataschool.io/subscribe/
Twitter: https://twitter.com/justmarkham
Facebook: https://www.facebook.com/DataScienceSchool/
LinkedIn: https://www.linkedin.com/in/justmarkham/